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Bisection Method Algorithm
1. start
2. Define function f(x)
3. Choose initial guesses x0 and x1 such that f(x0) f(x1) < 0
4. Choose pre-specified tolerable error e.
5. Calculate new approximated root as x2 = (x0 + x1)/2
6. Calculate f(x0) f(x2)
	a. if f(x0) f(x2) < 0 then x0 = x0 and x1 = x2
	b. if f(x0) f(x2) > 0 then x0 = x2 and x1 = x1
	c. if f(x0) f(x2) = 0 then goto (8)
	
7. if |f(x2) | > e then goto (5) otherwise goto (8)
8. Display x2 as root.
9. Stop















In this python program, x0 and x1 are two initial guesses, e is tolerable error and nonlinear function f(x) is defined using python function definition def f(x):
# Defining Function
def f(x):
    return x**3-5*x-9
# Implementing Bisection Method
def bisection (x0, x1, e):
    step = 1
    print ('\n\n*** BISECTION METHOD IMPLEMENTATION ***')
    condition = True
    while condition:
        x2 = (x0 + x1)/2
        print ('Iteration-%d, x2 = %0.6f and f(x2) = %0.6f' % (step, x2, f(x2)))

        if f(x0) * f(x2) < 0:
            x1 = x2
        else:
            x0 = x2
        
        step = step + 1
        condition = abs(f(x2)) > e
    print ('\nRequired Root is: %0.8f' % x2)

# Input Section
x0 = input ('First Guess: ')
x1 = input ('Second Guess: ')
e = input ('Tolerable Error: ')

# Converting input to float
x0 = float(x0)
x1 = float(x1)
e = float(e)

#Note: You can combine above two section like this
# x0 = float (input ('First Guess: '))
# x1 = float (input ('Second Guess: '))
# e = float (input ('Tolerable Error: '))
# Checking Correctness of initial guess values and bisecting
if f(x0) * f(x1) > 0.0:
    print('Given guess values do not bracket the root.')
    print ('Try Again with different guess values.')
else:
    bisection (x0, x1, e)
	












Execution of Programme
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Output: 
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Algorithm for Newton Raphson Method
An algorithm for Newton Raphson method requires following steps in order to solve any non-linear equation with the help of computational tools:
1. Start
2. Define function as f(x)

3. Define first derivative of f(x) as g(x)

4. Input initial guess (x0), tolerable error (e) 
   and maximum iteration (N)

5. Initialize iteration counter i = 1

6. If g(x0) = 0 then print "Mathematical Error" 
   and goto (12) otherwise goto (7) 

7. Calculate x1 = x0 - f(x0) / g(x0)

8. Increment iteration counter i = i + 1

9. If i >= N then print "Not Convergent" 
   and goto (12) otherwise goto (10) 

10. If |f(x1) | > e then set x0 = x1 
    and goto (6) otherwise goto (11)

11. Print root as x1

12. Stop
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2- def f(x):

3 return x**3-5%x-9

a

5- def bisection(x0,x1,e):

6 step = 1

7 Print(’\n\n*** BISECTION METHOD IMPLEMENTATION ***')

8 condition = True

9 while condition:

10 X2 = (x0 + x1)/2

1 print('Iteration-%d, x2 = %0.6f and f(x2) = %0.6f' % (step,
x2, f(x2)))

12

13 if f(x0) * f(x2) < 0:

12 x1 = x2

15 else:

16 X0 = x2

17

18 step = step + 1

19 condition = abs(f(x2)) > e

20 print('\nReguired Root is - %0.8F' % x2)
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X0 = input('First Guess: ')
X1 = input(’Second Guess
e = input('Tolerable Error: ')

Float(x0)

X0 =
x1 = float(x1)
float(e)

if F(x0) * f(x1) > 0.0:
print('Given guess values do not bracket the root.')
print('Try Again with different guess values.')

else:
bisection(x0,x1,e)
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*+% BISECTION METHOD IMPLEMENTATION ***

Iteration-1, x2 = 2.500000
Iteration-2, x2 = 2.750000
Iteration-3, x2 = 2.875000
Iteration-4, x2 = 2.812500
Iteration-5, x2 = 2.843750
Iteration-6, x2 = 2.859375
Iteration-7, x2 = 2.851562
Iteration-8, x2 = 2.855469
Iteration-9, x2 = 2.853516

and
and
and
and
and
and
and
and
and

f(x2) = -5.875000
f(x2) = -1.953125
f(x2) = 0.388672
f(x2) = -0.815186
f(x2) = -0.221588
f(x2) = 0.081448
f(x2) = -0.070592
f(x2) = 0.005297
f(x2) = -0.032680

Tteration-10, x2 = 2.854492 and f(x2) = -0.013700
Tteration-11, x2 = 2.854980 and f(x2) = -0.004204
Tteration-12, x2 = 2.855225 and f(x2) = 0.000546

Required Root is : 2.85522461




