A PRACTICAL FILE
[bookmark: _Hlk84001099]Numerical Methods in Chemical Engineering (Python)
(BTCH-18406)
Submitted
for
BACHELOR OF TECHNOLOGY
in
CHEMICAL ENGINEERING

[image:]

	Submitted To
	Submitted by

	Dr. Vipan K Sohpal
	XXXXX

	Associate Professor &
	B. Tech (CHE)

	Head, Chemical Engineering

	Semester:4th Roll No. 20XXXX

[bookmark: _Hlk84001670]Department of Chemical Engineering & Bio Technology
S.B.S STATE UNIVERSITY GURDASPUR
Jan-May,2022

INDEX
Section-A (Python)
	Sr. No
	Content
	Page No

	1.
	Solution of a system of linear equations in unknowns by Gaussian elimination.
	

	2.
	Gauss-Seidel iterative method to solve a linear system of equations.
	

	3.
	Solution of least square curve fitting method.
	

	4.
	Solution of nonlinear equation by Newton Raphson method.
	

	5.
	Application of Newton's formulae for interpolation.
	

	6.
	Application of Lagrange polynomial interpolation formula.
	

	7.
	Application of Runge-Kutta formula for ordinary differentiation equation (ODE)
	

	8.
	Application of Numerical integration by Trapezoidal rule.
	

	9.
	Application of Numerical integration by Simpson's rules.
	

Section-B (Polymath)
	Sr. No
	Content
	Page No

	1.
	Solution of a system of linear equations (5*5 Matrices)
	

	2.
	Gauss-Seidel iterative method to solve a linear system of equations.
	

	3.
	Solution of least square curve fitting method.
	

	4.
	Runge-Kutta formula for ordinary differentiation equation (ODE)
	

Bisection Method Algorithm
1. start
2. Define function f(x)
3. Choose initial guesses x0 and x1 such that f(x0) f(x1) < 0
4. Choose pre-specified tolerable error e.
5. Calculate new approximated root as x2 = (x0 + x1)/2
6. Calculate f(x0) f(x2)
	a. if f(x0) f(x2) < 0 then x0 = x0 and x1 = x2
	b. if f(x0) f(x2) > 0 then x0 = x2 and x1 = x1
	c. if f(x0) f(x2) = 0 then goto (8)
	
7. if |f(x2) | > e then goto (5) otherwise goto (8)
8. Display x2 as root.
9. Stop

In this python program, x0 and x1 are two initial guesses, e is tolerable error and nonlinear function f(x) is defined using python function definition def f(x):
Defining Function
def f(x):
 return x**3-5*x-9
Implementing Bisection Method
def bisection (x0, x1, e):
 step = 1
 print ('\n\n*** BISECTION METHOD IMPLEMENTATION ***')
 condition = True
 while condition:
 x2 = (x0 + x1)/2
 print ('Iteration-%d, x2 = %0.6f and f(x2) = %0.6f' % (step, x2, f(x2)))

 if f(x0) * f(x2) < 0:
 x1 = x2
 else:
 x0 = x2

 step = step + 1
 condition = abs(f(x2)) > e
 print ('\nRequired Root is: %0.8f' % x2)

Input Section
x0 = input ('First Guess: ')
x1 = input ('Second Guess: ')
e = input ('Tolerable Error: ')

Converting input to float
x0 = float(x0)
x1 = float(x1)
e = float(e)

#Note: You can combine above two section like this
x0 = float (input ('First Guess: '))
x1 = float (input ('Second Guess: '))
e = float (input ('Tolerable Error: '))
Checking Correctness of initial guess values and bisecting
if f(x0) * f(x1) > 0.0:
 print('Given guess values do not bracket the root.')
 print ('Try Again with different guess values.')
else:
 bisection (x0, x1, e)
	

Execution of Programme
[image:][image:]

Output:
[image:]

Algorithm for Newton Raphson Method
An algorithm for Newton Raphson method requires following steps in order to solve any non-linear equation with the help of computational tools:
1. Start
2. Define function as f(x)

3. Define first derivative of f(x) as g(x)

4. Input initial guess (x0), tolerable error (e)
 and maximum iteration (N)

5. Initialize iteration counter i = 1

6. If g(x0) = 0 then print "Mathematical Error"
 and goto (12) otherwise goto (7)

7. Calculate x1 = x0 - f(x0) / g(x0)

8. Increment iteration counter i = i + 1

9. If i >= N then print "Not Convergent"
 and goto (12) otherwise goto (10)

10. If |f(x1) | > e then set x0 = x1
 and goto (6) otherwise goto (11)

11. Print root as x1

12. Stop
image1.png

image2.png
main.py. ar

1

2- def f(x):

3 return x**3-5%x-9

a

5- def bisection(x0,x1,e):

6 step = 1

7 Print(’\n\n*** BISECTION METHOD IMPLEMENTATION ***')

8 condition = True

9 while condition:

10 X2 = (x0 + x1)/2

1 print('Iteration-%d, x2 = %0.6f and f(x2) = %0.6f' % (step,
x2, f(x2)))

12

13 if f(x0) * f(x2) < 0:

12 x1 = x2

15 else:

16 X0 = x2

17

18 step = step + 1

19 condition = abs(f(x2)) > e

20 print('\nReguired Root is - %0.8F' % x2)

image3.png
BNRRRBRNR

29
£
31
32
33

35
36
37
38

X0 = input('First Guess: ')
X1 = input(’Second Guess
e = input('Tolerable Error: ')

Float(x0)

X0 =
x1 = float(x1)
float(e)

if F(x0) * f(x1) > 0.0:
print('Given guess values do not bracket the root.')
print('Try Again with different guess values.')

else:
bisection(x0,x1,e)

image4.png
First Guess: 2
Second Guess: 3
Tolerable Error: 0.001

*+% BISECTION METHOD IMPLEMENTATION ***

Iteration-1, x2 = 2.500000
Iteration-2, x2 = 2.750000
Iteration-3, x2 = 2.875000
Iteration-4, x2 = 2.812500
Iteration-5, x2 = 2.843750
Iteration-6, x2 = 2.859375
Iteration-7, x2 = 2.851562
Iteration-8, x2 = 2.855469
Iteration-9, x2 = 2.853516

and
and
and
and
and
and
and
and
and

f(x2) = -5.875000
f(x2) = -1.953125
f(x2) = 0.388672
f(x2) = -0.815186
f(x2) = -0.221588
f(x2) = 0.081448
f(x2) = -0.070592
f(x2) = 0.005297
f(x2) = -0.032680

Tteration-10, x2 = 2.854492 and f(x2) = -0.013700
Tteration-11, x2 = 2.854980 and f(x2) = -0.004204
Tteration-12, x2 = 2.855225 and f(x2) = 0.000546

Required Root is : 2.85522461

